OsMSR2, a novel rice calmodulin-like gene, confers enhanced salt tolerance in rice (Oryza sativa L.)

نویسندگان

  • Guoyun Xu
  • Yanchun Cui
  • Mingjuan Li
  • Manling Wang
  • Yan Yu
  • Bin Zhang
  • Lifang Huang
  • Xinjie Xia
چکیده

OsMSR2 is a novel calmodulin-like gene in rice. Previous study has been demonstrated that OsMSR2 was a cold, drought and heat-inducible gene. However, the role of OsMSR2 in rice stress response is still unclear. To reveal the function of OsMSR2 involved in stress response, the expression pattern and effects of overexpression of OsMSR2 on salt stress were analyzed in rice. Quantitative real-time RT-PCR analysis showed that OsMSR2 was rapidly induced by salt stress. Histochemical GUS staining assay revealed that OsMSR2 was mainly expressed in root, leaf, seedling, lamina joint, base of stem and spikelet. Transgenic rice plants with overexpression of OsMSR2 showed more tolerant to salt stress, with 18.2% survival rate for the wild type and 51.3% for transgenic plants at the end of the salt treatment. In OsMSR2-overexpressing transgenic plants, expression levels of some stress-related genes were also altered compared to wild type plants under salt condition. The more accumulated proline and soluble sugars and decreased electrolyte leakage were also observed in transgenic rice compared to wild type plants under salt stress. These results indicate that OsMSR2 plays important roles in salt stress tolerance in rice, and is useful in developing transgenic crops with enhanced tolerance to salt stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterologous Expression of AtWRKY57 Confers Drought Tolerance in Oryza sativa

Drought stress is a severe environmental factor that greatly restricts plant distribution and crop production. Recently, we have found that overexpressing AtWRKY57 enhanced drought tolerance in Arabidopsis thaliana. In this study, we further reported that the Arabidopsis WRKY57 transcription factor was able to confer drought tolerance to transgenic rice (Oryza sativa) plants. The enhanced droug...

متن کامل

Improving Rice (Oryza sativa L.) Drought Tolerance by Suppressing a NF-YA Transcription Factor

The response to drought stress is a complicated process involving stress sensing, intracellular signaltransduction, and the execution of a cellular response. Transcription factors play important roles in the signaling pathways including abiotic stress. In the present study a rice NF-YA transcription factor gene was partially characterized following dehydration. Disrupting the gene via a T...

متن کامل

شناسایی رونوشت‌های با افزایش تظاهر در رقم برنج (Oryza sativa L.) مقاوم به تنش شوری با استفاده از تکنیک cDNA-AFLP

      Salt stress is one of the main abiotic stresses for rice that causes negative effects on its growth and productivity. In present study, effects of salt stress on differential gene expression of some genes which are responsible in salt stress were investigated in two rice tolerant and sensitive genotypes (FL478 and IR29) by applying cDNA-AFLP technique. Among the TDFs (Transcript Derived F...

متن کامل

Reduced expression of a gene encoding a Golgi localized monosaccharide transporter (OsGMST1) confers hypersensitivity to salt in rice (Oryza sativa)

Sugar transport is critical for normal plant development and stress responses. However, functional evidence for the roles of monosaccharide transporters in rice (Oryza sativa) has not previously been presented. In this study, reversed genetics was used to identify OsGMST1 as a member of the monosaccharide transporter family in rice. The predicted 481 amino acid protein has the typical features ...

متن کامل

An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice.

Receptor-like kinases play important roles in plant development and defense responses; however, their functions in other processes remain unclear. Here, we report that OsSIK2, an S-domain receptor-like kinase from rice (Oryza sativa), is involved in abiotic stress and the senescence process. OsSIK2 is a plasma membrane-localized protein with kinase activity in the presence of Mn(2+). OsSIK2 is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013